
Abstract Species do not respond identically to the presence of humans, and this
may have consequences at higher-levels of ecological organization. We established
bird transects on and off recreational trails in the high Córdoba Mountains of
Argentina, a biogeographic island characterized by high levels of endemism, to
examine the effect of human visitation at three different levels: (a) community
(avian species richness and diversity), (b) guild (relative density of carnivores, gra-
nivores, insectivores, and omnivores), and (c) population (relative density of indi-
vidual bird species). Human presence in the high Córdoba Mountains decreased
avian species richness and diversity, and reduced insectivorous relative density, but
we did not detect significant effects on granivores, omnivores, and carnivores. At the
population level, 6 of 28 species were negatively affected by human visitation; four of
these species are of conservation concern. Our results show negative responses to
recreationists at multiple levels (e.g., reductions in density, displacement of species
from highly visited areas), which may be related to spatial and temporal access to
suitable resources, physical disturbance or species-specific tolerance thresholds. Our
study area had lower levels of human visitation relative to other protected areas in
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the Northern Hemisphere, which raises the issue of whether this kind of biogeo-
graphically isolated habitat may be too fragile to sustain increasing levels of tourism.

Keywords Endemic species Æ Guild Æ Human disturbance Æ
Mountainous ecosystem Æ Recreational activities Æ South America

Introduction

Conventional wisdom suggests that the impact of tourism is localized because
tourists often prefer to visit areas close to established facilities (Priskin 2003), and
consequently wildlife further away may be minimally affected. This is an important
management paradigm that might be challenged in the future as the number of
tourists visiting natural areas worldwide is expected to double by 2020 (Christ et al.
2003), which raises concerns about the large scale environmental impacts of recre-
ational activities (e.g., development of infrastructure, disease transmission, invasion
of non-native species, reduced habitat quality, etc.). Importantly, tourism has be-
come profitable for developing countries, energizing local economies and, in some
countries, generating revenues for the conservation of protected areas (Sekercioglu
2002; Christ et al. 2003; but see Kiss 2004). For instance, tourism is contributing
between 3% and 25% of the Gross Domestic Product of developing nations
worldwide (Diaz Benevides and Perez-Ducy 2001). Therefore, managers face the
challenge of finding strategies that would promote coexistence between humans and
wildlife. Ultimately, the goal is to increase the chances of wildlife viewing without
eroding ecological integrity in protected areas (Blumstein et al. 2005).

Previous studies have shown that the effects of tourists on wildlife may trigger
short-term behavioral responses (Frid and Dill 2002), modify predation risk
assessment (Webb and Blumstein 2005), reduce breeding performance (Beale and
Monaghan 2004a; Müllner et al. 2004), influence habitat selection (Gill et al. 1996;
Gutzwiller and Anderson 1999) and population abundance (van der Zande et al.
1984; Miller et al. 1998), and modify community structure (Skagen et al. 1991;
Gutzwiller 1995; Fernández-Juricic 2002). Most of these studies have been con-
ducted in the Northern Hemisphere, which has experienced a higher volume of
recreationists than areas in the Southern Hemisphere. However, tourism has
increased sharply in the Southern Hemisphere recently, particularly within biodi-
versity hotspots (Christ et al. 2003). Thus, to increase our ability to predict the large-
scale and long-term effects of tourism and to devise proper management strategies, it
is necessary to assess population and community responses to recreationists in
threatened ecosystems in parts of the world without a long history of human visi-
tation.

We studied the effects of human visitation on birds inhabiting a biogeographically
isolated area in South America (high Córdoba Mountains, Argentina), with many
plant and animal endemic species (Cabido et al. 1998; 2003). Our goal was to assess
the effects of recreationists in areas with low (off-trails) and high (on-trails) levels of
visitation at different ecological levels: (a) community (avian species richness and
diversity), (b) guild (relative density of carnivores, granivores, insectivores, and
omnivores), and (c) population (relative density of individual bird species).

Some of the mechanisms proposed to explain wildlife responses to recreationists
predict that higher frequencies of human visitation reduce the spatial and temporal
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access to foraging and breeding resources, which could eventually lead to reductions
in species occurrence and density if disturbance is prevalent in space and time (Gill
et al. 1996; Fernández-Juricic 2002; Frid and Dill 2002; Fernández-Juricic et al.
2003). Therefore, we predicted a decrease in species richness, species diversity,
relative density of guilds and individual species in highly visited areas controlling for
differences between study sites, habitat structure, and altitude.

Methods

Study area

The high Córdoba Mountains (1,500 to 2,800 m) are almost 1,000 m higher than the
surrounding mountain systems in central Argentina, and their altitude and weather
make their ecological conditions different from surrounding habitats (Luti et al.
1979; Cabido et al. 1998). Vegetation consists of a mosaic of tussock grasslands,
lawns, granite outcrops, eroded areas with exposed rock surfaces and low densities of
Polylepis australis woodlands and shrublands (Cingolani et al. 2004). Mean precip-
itation is 854 mm, which is concentrated between October and March (Renison
et al. 2002). The climate is temperate with cold winters, and the mean annual
temperature is 8�C (Cabido 1985). Forty one endemic plant and animal taxa are
found in this area (Cabido et al. 2003), including 12 endemic sub-species of birds
(Nores 1995; Miatello et al. 1999).

In 1997, part of the high Córdoba Mountains (26,000 ha above 1,500 m.a.s.l.) was
expropriated to create the Quebrada del Condorito National Park, while the private
lands surrounding the Park were declared National (12,000 ha) and Provincial
(117,000 ha) Water Reserves. Because the high Córdoba Mountains are relatively
close to several big cities, and because hiking and climbing began increasing in
Argentina in the 1990’s, tourists visit the area year round, and generally hike and use
tents or mountain lodges to overnight.

We selected three sites which are the most widely visited in the high Córdoba
Mountains: (a) Champaquı́ mountain (S 31� 59¢; W 64� 49¢) with an un-maintained
trail of 14.0 km that usually varies in width from 0.8 m to 2 m, but may reach a width
of 30–40 m in areas where there is no clear trail; (b) Quebrada del Condorito National
Park (S 31� 37¢; W 64� 42¢) with a trail of 7.8 km which is well maintained and usually
varies in width from 0.8 to 1.5 m; and (c) Los Gigantes (S 31� 24¢; W 64� 47¢) with an
un-maintained trail of 10.8 km with similar characteristics to the Champaquı́ moun-
tain trail (National Parks Administration, pers. comm; personal observations). For
the sake of simplicity, hereafter we will call these areas Champaquı́, Condorito, and
Gigantes, respectively. Visitor rates to the Champaquı́ trail vary between 6,000
and 12,000 visitors per year, mostly trekking groups that may use horses for cargo and
occasionally motorcycles. Eight local families also use the trail (mainly on horseback).
Visitors to the Condorito trail vary between 3,000 and 4,000 per year, mostly trekking
and some bicycles. No horses or motorcycles are allowed in the trail and there is no
use by local inhabitants. In the Gigantes trail, visitation rates vary between 3,000 and
6,000 per year, mostly trekking. In a few areas, there is also some occasional use by
motorcycles and vehicles, but the steep terrain precludes motorized vehicles in the
rest of trail. Around five local families use the trail (mainly on horseback), but there is
no horse use by visitors. Hunting is illegal in all the Córdoba Mountains.
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General sampling procedures

Using a Geographic Information System (GIS) with vegetation, erosion, topography,
human settlements, and trails layers at a pixel size of 30 · 30 m (Cingolani et al.
2004), we selected 21 pairs of locations for transects. The number of locations for
transects in each study site was determined according to the availability of straight
trail sections and the possibility of obtaining appropriate off-trail transects (see
below). As a result, the pairs of transects differed among study sites (Champaquı́,
n=10; Condorito, n=6; Gigantes, n=5). No more transects could be established in the
study areas without relaxing our transect selection criteria.

From each pair, one transect was placed on a trail used by tourists (on-trail) and
the other transect was placed on an area with similar topography, vegetation, natural
rock outcrops, and rock exposed by erosion but without tourist use (off-trail). The
criteria for determining habitat similarity for each pair of transects was based on the
GIS thematic layers. After locating sectors with trails that were fairly straight for at
least 600 m and that were at least 300 m from each other (average distance between
the closest ends of transects was 1,145 – 1,129 m), we chose off-trail transects that
were more than 200 m away from on-trail transects but with similar proportion of
habitat composition (see also Results), altitude, slope orientation, and aspect, and as
a result were presumably influenced by similar potential confounding factors. All
transects were selected in areas with no human settlements or camping areas near
them. Livestock is the main determinant of vegetation types in the High Córdoba
Mountains (Cingolani et al. 2003). As our vegetation types were similar on and off
trails, long term grazing pressure can be assumed to be approximately equal.

In a preliminary study, we estimated that in the habitat with the least visibility
(sparse Polylepis woodland and shrubland), detection probabilities started dropping
substantially 30 m away from the centre of the transect. Thus, we established tran-
sects that were 60 m wide and 600 m long (3.6 ha).

Bird surveys were conducted between December 2002 and March 2003, which
encompassed the breeding and post-breeding seasons, because bird species richness
(Ordano 1996) and the frequency of human visitation (National Parks Administration,
pers. comm.) are at the highest levels during this period, which would increase the
chances of human–wildlife interactions. We surveyed birds between 0800 and 1200 and
1530 and 1930 because those were the periods with the highest bird activity. Adult and
fledgling individuals were counted during surveys. Pairs of on- and off-trail transects
were surveyed consecutively on a given day (but each pair visited in random order
between surveys). We visited each transect three times to obtain better estimates of
species presence and abundance between areas with low and high visitation. All sur-
veys were conducted by only one person (LH) during favorable weather conditions to
avoid inter-observer bias.

In each transect, we recorded the identity and abundance of all individuals seen or
heard within 30 m at each side of the center of the transect. We included in the
analyses individuals that were only using the transects (e.g., discarded observations
with individuals flying high). The observer was trained to visually estimate the 30 m
with <10% error prior to beginning the surveys. Vegetation is mainly composed of
short grassing lawns, many flat rocky areas, and tussock grasslands where bird
detection was relatively easy. Potential small biases in detection probability between
habitats should not affect our on and off-trail comparisons due to the similarity in
habitat composition between pairs of transects. Since four species of the genus
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Anthus (A. correndera, A. furcatus, A. hellmayri and A. lutescens) were difficult to
distinguish, we lumped all individuals in one category (Anthus sp.).

We could not get density estimates following distance sampling (Buckland et al.
2001), because the studied species had relatively low abundances (Ordano 1996), and
the assumptions of this method could not be met. Consequently, we developed a
relative index of density by averaging the number of individuals detected on each
transect over the three visits and dividing that by the area of each transect (3.6 ha).
This index can only be used for comparisons between the conditions studied, but not
to make inferences about the absolute density of the species. The relative density
index was expressed as number of individuals per 10 ha.

We used the vegetation map in the GIS (Cingolani et al. 2004) to determine
habitat composition in each transect. In a 90 · 600 m area including a transect, we
counted the number of pixels of each of seven distinct habitat types (Polylepis
woodland and shrubland, thick tussock grassland with hydromorphic lawn, thin
tussock grassland, lawn, outcrop with tussock grassland, natural rock outcrop mixed
with exposed rock, and rock exposed by erosion, Appendix 1, as described by
Cingolani et al. 2004). We also calculated the average altitude of each transect.
These variables were included in the statistical analyses to control for variations in
habitat composition between transects.

Statistical analyses

We used a nested ANOVA to check whether habitat composition would vary
between on- and off-trail transects within and among study sites.

From our surveys, we calculated the following dependent variables in each
transect: species richness (mean number of species detected per transect), species
diversity (Shannon diversity index), relative density of carnivores, granivores,
insectivores, and omnivores, and relative density of individual species. In the sta-
tistical analyses, we only included species present in at least five transects (following
Fernández-Juricic 2002). We analyzed these dependent variables with General
Linear Models (GLM), including the following categorical factors: visitation fre-
quency (2 levels, on- and off-trail transects), study area (three levels, Champaquı́,
Condorito and Gigantes), and the interaction between visitation frequency and study
area. We also included the following covariates (all continuous): transect altitude
and habitat composition (number of pixels of seven different habitat types, see
Appendix 1). The results of step-wise selection procedures could be misleading with
unbalanced designs (in our case, different number of transects per study site), but
such effect could be minimized by running full models. We included all variables in
the analyses, but for the sake of clarity in the presentation we reported only the main
factors (frequency of visitation and study area), their interaction, and the significant
covariates. All other factors not reported were non-significant (P > 0.05). We also
ran the same models for species richness, species diversity, and guild relative density
but excluding the species that were significantly affected by visitation frequency (see
Results) to determine if the community and guild level patterns were consistent or
relied on the effects of individual species.

The effects of human disturbance may become noticeable only at certain den-
sities. For instance, Reijnen and Foppen (1995) found that the negative effects of
road noise were intensified when the density of breeding birds was lower. Using a
logistic regression, we assessed whether the probabilities of finding a significant
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effect of human visitation could be affected by the relative densities of each
species.

We checked the normality and homoscedasticity of our data before and after
running the analyses. We log-transformed some variables (see Results) to meet
assumptions of linear models. Throughout, we reported untransformed means – SE.

Results

We recorded a total of 45 bird species in a total of 151.2 ha (considering the four
species from the genus Anthus as one species, Appendix 2). The mean relative
density of all recorded species was 22.55 – 3.14 individuals per 10 ha.

Habitat composition varied among some study sites (Polylepis woodland and
shrubland, F2, 36=5.47, P=0.008; thick tussock grassland with hydromorphic lawn,
F2, 36=14.23, P<0.001; outcrop with exposed rock, F2,36=7.02, P=0.002; the other
relationships were non-significant, F2, 36 > 3.25, P > 0.05). However, there were no
differences in habitat composition between on- and off-trail transects within each
study site (F3,36 varied between 0.04 and 0.87, P > 0.05).

Community level

Species richness was lower in on-trail transects compared to off-trail transects
(Fig. 1a). Species richness also varied among study sites (Fig. 1a). The interaction
between study area and visitation frequency was not significant (Table 1). Only
three covariates were significant (Table 1): species richness was positively affected
by altitude and the amount of lawn, and negatively by the amount of rock exposed
by erosion. A similar result was found without considering the species that were
affected by human disturbance (see Population level section): species richness was
lower in on-trail than in off-trail transects, with variations among study sites and
similar effects of the covariates (Table 1).

Species diversity (Shannon index) was lower in on-trail relative to off-trail tran-
sects, but no variation was found among sites (Table 1, Fig. 1b). The study site vs.
visitation frequency interactions were not significant; however, species diversity was
positively associated with the amount of lawn and with altitude (Table 1). Species
diversity calculated without considering the species affected by visitation frequency
(see Population level section) was also lower in on-trail relative to off-trail transects,
but it varied among study sites (Table 1), and was positively associated with
Polylepis woodland and shrubland and altitude, and negatively with rock exposed by
erosion (Table 1).

Guild level

At the guild level, we found lower carnivorous relative density in on-trail relative to
off-trail transects (Table 2, Fig. 2a). Study area and study area vs. visitation fre-
quency interaction did not affect carnivorous relative density (Table 2), nor did any
of the other covariates (P > 0.05). However, when we ran another model with
carnivorous relative density excluding the two carnivorous species that were affected
by human visitation (see Population level section), we found no significant effect of
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the frequency of visitation (off-trail transects = 1.808 – 0.431 individuals/10 ha, on-
trail transects = 0.749 – 0.244 individuals/10 ha) and the other factors (Table 2).

Granivorous relative density did not differ between visitation frequencies (off-
trail transects = 5.776 – 1.735 individuals/10 ha, on-trail transects = 6.041 – 2.917
individuals/10 ha), but it did vary among study sites (Table 2, Champ-
aqui = 3.702 – 1.508 individuals/10 ha, Condorito = 2.701 – 0.907 individuals/10 ha,
Gigantes = 14.167 – 5.746 individuals/10 ha). Granivorous relative density was also
positively affected by altitude, and negatively by the amount of rock exposed by
erosion (Table 2).

Insectivorous relative density was lower in on-trail transects relative to off-trail
transects and varied among study sites (Table 2, Fig. 2b). The study site vs. visitation
frequency interaction was not significant (Table 2), but insectivorous relative density
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was positively associated with altitude and the amount of lawn (Table 2). Insectiv-
orous relative density without considering the species affected by human visitation
(see Population level section) was also lower in on-trail (9.082 – 1.658 individuals/
10 ha) transects compared to off-trail transects (5.996 – 2.013 individuals/10 ha), and
differed among study sites (Champaqui =3.889 – 1.219 individuals/10 ha, Condori-
to =10.802 – 3.126 individuals/10 ha, Gigantes = 10.925 – 2.559 individuals/10 ha)
(Table 2). Three covariates were positively associated with this insectivorous
relative density: altitude, and the amount of lawn and thin tussock grassland
(Table 2).

Omnivorous relative density did not differ between on-trail (5.996 – 1.576 indi-
viduals/10 ha) and off-trail (4.629 – 1.643 individuals/10 ha) transects, and was not
affected by any of the other studied factors (Table 2). Similar results were found
with omnivorous relative density without considering the species affected by human
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Fig. 2 Relative density (individuals/10 ha) of (a) carnivores and (b) insectivores in areas with low
(off-trail) and high (on-trail) levels of human visitation in the high Córdoba Mountains
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visitation (see Population level section): no differences between on-trail
(4.629 – 1.571 individuals/10 ha) and off-trail (3.791 – 1.617 individuals/10 ha)
transects, and no effect of the other studied factors (Table 2).

Population level

We modeled the effects of visitation frequency on 28 of the 45 species recorded, and
found that the relative densities were lower in on-trail transects in 6 species (three
insectivores: Anthus sp., Asthenes modesta cordobae, Asthenes sclateri sclateri; two
carnivores: Buteo albicaudatus, Falco sparverius; and one omnivore:Turdus chigu-
anco, Table 3, Fig. 3). Two of these species are endemic (Asthenes modesta cordo-
bae, Asthenes sclateri sclateri, Appendix 2), and two are declining (Buteo
albicaudatus, Turdus chiguanco, Appendix 2).

Table 2 Results from general linear models explaining variation in the relative density of
carnivorous, granivorous, insectivorous, and omnivorous foraging guilds as a function of human
visitation, study area, and habitat-related characteristics

Dependent factor Independent factors F d.f. P

Carnivorous relative
density
R2 = 0.46

Intercept 0.36 1, 28 0.552
Visitation frequency (VF) 5.56 1, 28 0.025
Study area (SA) 1.30 2, 28 0.287
VF · SA 1.69 2, 28 0.201

Carnivorous relative
density without species
affected by VF R2 = 0.03

Intercept 0.10 1, 28 0.749
Visitation frequency (VF) 2.18 1, 28 0.151
Study area (SA) 1.37 2, 28 0.269
VF · SA 0.53 2, 28 0.589

Granivorous relative
density R2 = 0.65

Intercept 0.54 1, 28 0.467
Visitation frequency (VF) 0.17 1, 28 0.682
Study area (SA) 6.47 2, 28 0.005
VF · SA 1.29 2, 28 0.289
Rock exposed by erosion ()) 5.59 1, 28 0.025
Altitude (+) 11.07 1, 28 0.002

log Insectivorous
relative density R2=0.65

Intercept 0.48 1, 28 0.490
Visitation frequency (VF) 14.21 1, 28 <0.001
Study area (SA) 4.10 2, 28 0.027
VF · SA 0.01 2, 28 0.996
Lawn (+) 11.72 1, 28 0.002
Altitude (+) 4.36 1, 28 0.045

log Insectivorous relative
density without species
affected by VF R2=0.66

Intercept 2.03 1, 28 0.164
Visitation frequency (VF) 5.96 1, 28 0.021
Study area (SA) 8.71 2, 28 0.001
VF · SA 0.05 2, 28 0.952
Lawn (+) 10.29 1, 28 0.003
Thin tussock grassland (+) 4.97 1, 28 0.034
Altitude (+) 7.54 1, 28 0.010

Omnivorous relative
density R2=0.04

Intercept 1.97 1, 28 0.171
Frequency of visitation (FV) 0.06 1, 28 0.801
Study area (SA) 0.92 2, 28 0.413
FV · SA 1.86 2, 28 0.174

Omnivorous relative
density without species
affected by VF R2=0.02

Intercept 1.42 1, 28 0.244
Visitation frequency (VF) 0.28 1, 28 0.603
Study area (SA) 0.62 2, 28 0.547
VF · SA 1.85 2, 28 0.174

Shown are covariates with P < 0.05. Significant P-values are marked in bold
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There was no relationship between the probability of finding a significant visita-
tion frequency effect and the relative density of the studied species (logistic
regression, X2=0.005, d.f. = 1, P=0.938).

We found a significant interaction between visitation frequency and study area for
Carduelis magellanica (Table 3). This granivore was not affected by visitation fre-
quency in Champaqui (off-trail transects = 0.012 – 0.056 individuals/10 ha, on-trail
transects = 0.024 – 0.056 individuals/10 ha), but its relative density was lower in
on-trail transects in Condorito (off-trail transects = 0.261 – 0.091 individuals/10 ha,

Table 3 Results from general linear models explaining variation in the relative density of individual
species in relation to human visitation frequency, altitude, and habitat-related characteristics

Species Model
R2

VF SA FV · SS Altitude PWS RP OER OTG

AEAN 0.47 0.44 4.94** 0.80
AGMO 0.06 0.08 0.36 0.01
ANTHSP 0.51 7.20* 0.07 1.66
ATMO 0.56 4.33* 0.63 0.75 (+) 6.26*
ASSC 0.51 11.16** 0.57 0.57
BOAY 0.09 0.05 0.51 0.53
BUAL 0.58 5.23* 0.16 3.20 (+) 5.43*
BUPO 0.52 0.01 2.01 0.02 ()) 5.72*
CAMA 0.63 0.05 1.20 5.92* (+) 5.11* ()) 4.24*
CAIN 0.54 0.23 1.46 1.34 (+) 5.55* ()) 6.37*
CAAU 0.02 0.23 1.74 1.08
CICO 0.15 0.02 0.52 2.11
CIFU 0.56 1.06 1.06 2.77 (+) 15.89** ()) 4.29*
CIOR 0.55 1.15 6.26** 0.91 (+) 5.82*
CIPL 0.60 0.05 0.37 1.09 ()) 5.09*
FASP 0.24 4.51* 0.13 0.06
MURU 0.50 1.11 0.68 0.80 (+) 11.89**
NOCY 0.43 0.28 0.91 1.35
NOMA 0.35 0.26 0.24 1.76 ()) 6.17**
PHUN 0.60 0.25 4.34* 0.54 (+) 11.72*** (+) 6.28*
POPL 0.09 2.09 0.09 0.52
SASP 0.52 0.01 2.39 0.46 (+) 4.56*
STLO 0.43 0.04 3.39* 1.08
TRAE 0.02 0.38 0.18 1.91
TUCH 0.61 4.19* 4.29* 0.45
VACH 0.01 0.64 0.47 0.64
VUGR 0.04 0.53 1.60 0.18
ZOCA 0.63 1.71 9.05** 0.09 (+) 4.88* ()) 9.55** ()) 13.61*** (+) 4.87*

Shown for each factor are the direction of the relationship (+, positive; ), negative), the F-values and
P-values when significant. Study area and its interaction with visitation frequency had 2, 28 degrees
of freedom; the remainder of the factors had 1, 28 degrees of freedom. All densities were log-
transformed, but MURU, TRAE, and STLO. Shown are covariates with P<0.05

*, P<0.05; **, P<0.01; ***, P<0.001; VF, visitation frequency; SA, study area; PWS, Polylepis
woodland/shrubland; RP, rock exposed by erosion; outcrop with exposed rock, OER; outcrop with
tussock grassland, OTG; AEAN, Aeronautes andecolus; AGMO, Agriornis montana fumosus;
ANTHSP, Anthus sp.; ATMO, Asthenes modesta Córdobae; ASSC, Asthenes sclateri sclateri; BOAY,
Bolborhynchus aymara; BUAL, Buteo albicaudatus; BUPO, Buteo polyosoma; CAMA, Carduelis
magellanica; CAIN, Catamenia inornata; CAAU, Cathartes aura; CICO, Cinclodes comechingonus;
CIFU, Cinclodes fuscus; CIOR, Cinclodes olrogi; CIPL, Cistothorus platensis; FASP, Falco spar-
verius; MURU, Muscisaxicola rufivertex achalensis; NOCY, Nothiochelidon cyanoleuca; NOMA,
Nothura maculosa; PHUN, Phrygilus unicolor cyaneus; POPL, Polyborus plancus; SASP, Sappho
sparganura; STLO, Sturnella loica obscura; TRAE, Troglodytes aedon; TUCH, Turdus chiguanco;
VACH, Vanellus chilensis; VUGR, Vultur gryphus; ZOCA, Zonotrichia capensis
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on-trail transects = 0.021 – 0.081 individuals/10 ha), and higher in on-trail transects
in Gigantes (off-trail transects = 0.018 – 0.072 individuals/10 ha, on-trail tran-
sects = 0.214 – 0.083 individuals/10 ha).

We also found that the relative density of six species (two insectivores, two
granivores, two omnivores) varied among study sites (Table 3). Altitude significantly
affected ten species (four insectivores, four granivores, two omnivores, Table 3),
which in all cases but one (Nothura maculosa) increased their relative densities at
higher altitudes. The amount of different habitat types affected several species in
different ways (Table 3): Polylepis woodland and shrubland, four species (two gra-
nivores, one granivore, one carnivore), rock exposed by erosion, four species (three
granivores, one insectivore); outcrop with exposed rock, one insectivore species; and
outcrop with tussock grassland, one granivore species.

Discussion

Our findings suggest that human disturbance may be involved in the responses found
at different levels (community, guild, population). Six species, four of them of
conservation concern, had lower densities in areas with relatively high levels of
human visitation in the high Córdoba Mountains. Two of the four guilds studied had
lower densities in areas with high visitation levels (carnivores and insectivores);
although, the effects on carnivores were apparently caused by two abundant species
negatively affected by visitors. Finally, species richness was lower in highly visited
areas, even when the six species sensitive to disturbance were not considered. We
compare these results with previous studies and suggest some mechanisms involved
in these responses.
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Fig. 3 Relative densities (individuals/10 ha) of Anthus sp. (ANTHSP), Asthenes modesta cordobae
(ATMO), Asthenes sclateri (ASSC), Buteo albicaudatus (BUAL), Falco sparverius (FASP); Turdus
chiguanco (TUCH) in areas with low (off-trail) and high (on-trail) human visitation in the high
Córdoba Mountains
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Like ours, some studies found a decrease in the occurrence of species associated
with recreational activities in different habitat types (Hammitt and Cole 1987; Miller
et al. 1998; Riffell et al. 1996; Fernández-Juricic 2002). The displacement of species
from highly visited areas has been suggested to be the result of reductions in habitat
quality (e.g., Gill et al. 1996; Fernández-Juricic 2002; Frid and Dill 2002; Fernández-
Juricic et al. 2003). Physical disturbance may decrease habitat structural complexity
(Miller et al. 1998; Laiolo 2003) and/or affect the spatial and temporal patterns of
resource exploitation due to the presence of pedestrians (Soulé et al. 1992;
Fernández-Juricic 2000). We found that habitat composition was not significantly
different between off- and on-trail areas; this suggests that a reduction in the pro-
portion of suitable habitat available to birds may be underlying human–wildlife
interactions in this habitat. However, future studies should rule out physical effects
of disturbance (namely, soil compaction, soil erosion, and increase in trail width and
depth; Deluca et al. 1998; McDougall and Wright 2004; Roovers et al. 2004) and
explore this mechanism experimentally (Fernández-Juricic et al. 2003) before
reaching definite conclusions.

Taking aside the effects of recreational activities on single species, only the
insectivorous guild consistently had lower relative densities in highly visited areas.
Similar effects on insectivores were also found in other studies conducted in
urbanized landscapes (Chuan Lim and Sodhi 2004; but see Fernández-Juricic 2002).
The decrease in the density of insectivores with higher human disturbance has been
usually associated with food limitation (Canaday 1996; Laiolo 2003; Chuan Lim and
Sodhi 2004) rather than low tolerance levels (Fernández-Juricic 2002). The com-
position of insect communities can indeed change at habitat edges associated with
human disturbance (Webb et al. 1984; Shure and Phillips 1991; Suarez et al. 1998;
Bolger et al. 2000; Kitahara et al. 2000), in some cases with invasive species being
more abundant near human-induced edges and native species farther from those
edges (Webb 1989). If bird insectivores rely mainly on native insects, variations in
insect community composition with recreationists might potentially affect food
availability; a possibility that deserves further study in the high Córdoba Mountains.

We found that 21.4% of the species whose abundance could be modeled de-
creased their densities in highly visited areas. However, the proportion of species
affected by recreational activities was lower than in other studies, which reported
negative effects in 53–92% of species (van der Zande and Vos 1984; Fernández-
Juricic 2002; van der Zande et al. 1984; Miller et al. 1998). The low proportion of
species affected by recreationists may have to do with the reduced levels of human
visitation to the high Córdoba Mountains (3,000–12,000 visitors per year) relative to
other areas (60,000 visitors per year in Laiolo 2003; 3,500,000 visitors per year in
Miller et al. 1998; > 5,000,000 visitors per year in Fernández-Juricic 2002) or with
species-specific differences in tolerance to disturbance (Blumstein et al. 2003).
Alternatively, the low proportion of species affected could be related to behavioral
adjustments to disturbance (Frid and Dill 2002). For instance, Forsman et al. (1998)
found in boreal forests that territories tended to be more clumped when animals
were exposed to an artificial predator during the breeding season. Territorial species
in the High Córdoba Mountains could reduce the perceived risk imposed by the
presence of visitors by reducing inter-specific neighbor distances; a strategy that
might not be profitable at the intra-specific level due to competition effects (Pulliam
and Caraco 1984). If behavioral responses like this are enough to reduce human
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disturbance, population level effects might not be noticeable (see also, Gill et al.
2001; Beale and Monaghan 2004b).

Conservation implications

Understanding human–wildlife interactions in this kind of environment provides an
opportunity to assess how the spread of recreational activities might affect species
with limited geographic distribution, which has become a top-priority for conser-
vation biology (Soulé et al. 2001). Despite the low number of species negatively
affected by recreationists, two of them are endemic and two are in decline. Fur-
thermore, our relatively low number of transects suggest that more species could be
decreasing due to tourism, but could not be detected with our samples. In threatened
ecosystems, species of high conservation concern could be the first ones to be
influenced by tourism, and raises the issue of whether or not biogeographic islands
may be too fragile to support tourism. Given the geographic isolation of the high
Córdoba Mountains, alternative habitats may not be available for these species,
which could affect their persistence. Besides ecological loss, the decreased abun-
dance of these species might also reduce wildlife-viewing opportunities and the
economic benefits for local communities.

What strategies could then promote coexistence? First, small-scale manipulative
studies to determine sustainable levels of human visitation must be conducted (e.g.,
Rodriguez-Prieto and Fernández-Juricic 2005). Second, visitation should be limited
to few trails rather than expanding the area visitors can access, because the mere
presence of visitors could reduce the access to suitable habitat for some species
and guilds. Third, in areas with high visitation levels, increasing protective cover
(e.g., Polylepis woodland) might also reduce negative impacts of human
disturbance.
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Appendix 1

Table 4 Brief description of the different habitat types identified in the study areas in the high
Córdoba Mountains (based on Cingolani et al. 2004)

Habitat types Description

Polylepis woodland
and shrubland

Dominated by Polylepis woodland/shrubland, with shrubby grassland
and rock outcrop, but low total rock cover. Generally occurred below
2000 m on steep slopes in mid to low topographic positions, but was
also found on flat sites in ravine bottoms or in gentle slopes. Erosion
and grazing pressure were present
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Appendix 2

Table 4 continued

Habitat types Description

Thick tussock grassland
with hydromorphic lawn

Generally located in low, flat, sometimes flooded positions. Some stands
lack the hydromorphic lawn type, being mostly covered by Poa grass-
land. Proportion of active erosion edges was relatively high, but re-
stricted to the margins of water courses. Grazing pressure was variable

Thin tussock grassland Dominated by Deyeuxia/Festuca tussocks. Generally found on gentle
slopes and flat summits at all altitudes, although the dominant species
shifted with altitude. Below 1,900 m Festuca dominated at all topo-
graphic positions, being gradually replaced by Deyeuxia as altitude
increased, up to 2,300 m where this species dominated at all topo-
graphic positions. Erosion activity was low, and livestock pressure
intermediate

Lawn Largely dominated by Alchemilla-Carex lawn, with some patches of
other types. Rock exposed by erosion was generally found at the bottom
of concavities which get flooded in the rainy season. Located at sites with
less than a 10% slope, usually at high altitudes. Erosion was more active,
and grazing pressure more intense, than in tussock grasslands

Outcrop with tussock
grassland

A mixture of natural outcrops, exceptionally reaching 120 m tall, and
tussock grasslands, together with small patches of other types,
including Polylepis woodlands or shrublands. Mainly located on mid
and upper steep slopes. Erosion activity was intermediate, and
grazing pressure low

Outcrop with exposed rock Dominated by rock, with small vegetation patches. Found at similar
topographic positions than outcrop with tussock grassland, although
at somewhat higher altitudes in more exposed and northerly sites.
Activity of erosion and grazing pressure were high

Rock exposed by erosion Its bare rock cover was higher than 80%, most of which was exposed
due to erosion. Generally located in flat sites with high erosion
activity. The grazing pressure on the few remaining vegetation pat-
ches was very intense

Table 5 List of all recorded species, emphasizing their conservation status and degree of endemism
(based on Miatello et al. 1999)

Common name Scientific name Guild Conservation
status (degree
of endemism)

Andean swift Aeronautes andecolus Insectivorous Unknown
Black-bellied shrike-Tyrant Agriornis montana fumosus Insectivorous Unknown

(subendemic)
Tufted tit-Tyrant Anairetes parulus Insectivorous Unknown
‘‘Anthus sp.’’* Insectivorous Unknown
Cordilleran Canastero Asthenes modesta cordobae Insectivorous Unknown

(subendemic)
Córdoba Canastero Asthenes sclateri sclateri Insectivorous Unknown

(subendemic)
Gray-hooded Parakeet Bolborhynchus aymara Granivorous Declining/

CITES II
White-tailed Hawk Buteo albicaudatus Carnivorous Declining
Red-backed Hawk Buteo polyosoma Carnivorous Declining
Swainson’s Hawk Buteo swainsoni Carnivorous Unknown
Hooded Siskin Carduelis magellanica Granivorous Unknown
Band-tailed Seedeater Catamenia analis Granivorous Declining
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Table 5 continued

Common name Scientific name Guild Conservation
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of endemism)

Plain-colored Seedeater Catamenia inornata
cordobensis

Granivorous Declining
(subendemic)

Turkey Vulture Cathartes aura Carnivorous Unknown
White-winged Cinclodes Cinclodes atacamensis Insectivorous Unknown

(subendemic)
Chestnut-winged Cinclodes Cinclodes comechingonus Insectivorous Abundant
Bar-winged Cinclodes Cinclodes fuscus Insectivorous Abundant
Olrogs’s Cinclodes Cinclodes olrogi Insectivorous Abundant

(endemic)
Cinereous Harrier Circus cinereus Carnivorous Unknown
Grass Wren Cistothorus platensis Insectivorous Abundant
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CITES I
Rufous-collared Sparrow Zonotrichia capensis Granivorous Abundant

*Anthus sp.’’ includes the following species: A. correndera, A. furcatus, A. hellmayri and A. lutescens
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Müllner A, Linsenmair KE, Wikelski M (2004) Exposure to ecotourism reduces survival and affects
stress response in hoatzin chicks (Opisthocomus hoazin). Biol Conserv 118:549–558

Nores M (1995) Insular biogeography of birds on mountain-tops in north western Argentina.
J Biogeogr 22:61–70

Ordano M (1996) Estudio de una comunidad de aves altoserrana (Córdoba, Argentina) durante un
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