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Airports  often  contain  foraging,  breeding,  and  roosting  resources  for wildlife.  Airports  also  have  different
types  of  radars  to  assist  with air traffic  control,  monitoring  weather,  and  tracking  wildlife  that  could
become  a risk  for collision  with  aircraft.  The  effect  of  radar  electromagnetic  radiation  on  wildlife  behav-
ior  is  not  well  understood.  The  goal  of  this  study  was  to determine  whether  bird  behavior  is affected
by  radar  in  two  contexts:  stationary  radar (e.g.,  surveillance  radar)  and  approaching  radar  (e.g.,  aircraft
weather  radar).  We  used  brown-headed  cowbirds  (Molothrus  ater)  as  a model  species  as  they  are  com-
mon  at  airports.  We  hypothesized  that  radar challenges  attention  mechanisms  and  thus  might  distract
birds  from  foraging  or avoiding  threats  (i.e. aircraft).  In the  stationary  radar  context,  we performed  one
experiment  in  the summer  and  one  in the  winter.  In the summer,  we  found  indication  of  changes  in
vigilance  and  movement  behaviors  during  and  after  exposure  to  stationary  radar.  For  example,  move-
ment  rate  increased  from  before  to during  radar  exposure  in  the  summer  (t101 =  −3.21,  P =  0.002).  In the
winter,  we  also found  that stationary  radar  increased  movement  behaviors.  In  the  approaching  radar  con-

text,  we  found  that  birds  exposed  to an  approaching  vehicle  with  radar showed  earlier  escape  responses
(t56.3 = −2.66,  P = 0.010)  or escape  flights  that  dodged  sideways  more  than  with  the  radar  off  (t41.5 = −2.67,
P =  0.011).  Taking  these  findings  together,  we  suggest  that  birds  might  avoid  stationary  radar  units,  and
moving  radar  units  (e.g.,  aircraft)  might  enhance  escape  responses  at  low  vehicle  speeds  during  taxi,  but
likely  not  at higher  speeds  during  take-off,  landing,  and  flight.

©  2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

Airports utilize a large number of sources of electromagnetic
adiation, specifically in the microwave range (Joseph et al., 2012).
adar is a type of microwave that air traffic control and aircraft
se for navigation, surveillance, communication, and detection of
eather patterns and bird flocks (Huansheng et al., 2010; Joseph

t al., 2012; Stimson, 1998). These sources of electromagnetic radi-
tion may  make airports areas with high levels of microwaves
Joseph et al., 2012), and have the potential to affect habitat use
y birds and/or cause negative consequences at the individual or
opulation levels (Kelly and Allan, 2006). However, little is known

bout how these microwaves might affect animals. Some stud-
es indicate that even low doses of electromagnetic radiation can
ave significant effects on many aspects of an organism’s ecology

∗ Corresponding author.
E-mail address: efernan@purdue.edu (E. Fernández-Juricic).

ttp://dx.doi.org/10.1016/j.applanim.2015.08.001
168-1591/© 2015 Elsevier B.V. All rights reserved.
(reviewed in Balmori, 2009; Cucurachi et al., 2013; Fernie and
Reynolds, 2005) and behavior (Tanner, 1966; Tanner et al., 1967).

Radar is associated with electric and magnetic fields that pulse
on multiple time scales simultaneously (Stimson, 1998; Fig. 1a).
Microwaves are only emitted for a small percentage, or duty cycle,
of the total interpulse period (Fig. 1b). Airports use many X-band
radars (Fig. 1a) with microwaves of a frequency that can penetrate
skin and muscle tissues to a depth of ∼4 mm (National Council on
Radiation Protection and Measurements, 1981). This tissue pene-
tration may  allow an animal to detect these microwaves through
one of two mechanisms: thermoreception (Byman et al., 1986) and
auditory detection (Lin, 1978).

Microwaves have been shown to raise body temperature
(Byman et al., 1986) and through thermoreception increase
the incidence of thermoregulatory behaviors (e.g., gaping, wing

spreading, and panting) in birds (Wasserman et al., 1985). Ther-
moreception of microwaves has also been hypothesized to cause
changes in avoidance and dominance behaviors (Wasserman et al.,
1984a,b). Pulses of microwaves generate a thermoelastic pressure

dx.doi.org/10.1016/j.applanim.2015.08.001
http://www.sciencedirect.com/science/journal/01681591
http://www.elsevier.com/locate/applanim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applanim.2015.08.001&domain=pdf
mailto:efernan@purdue.edu
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Fig. 1. Properties of radar. (a) The electromagnetic spectrum, with microwaves inset. The frequency of radar used in this study (9.3 GHz) is marked with the dotted line.
Also  displayed in (a) is the nature of electromagnetic waves, with equivalent and perpendicular magnetic fields, the intensity of which follow the wave pattern of the
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lectromagnetic radiation wavelength. Adapted from Sorrentino and Bianchi (201
ensity at some distance as transmitted by the antenna. Power density is modulate
b)  is displayed as one of the vertical lines in (c). Adapted from Stimson (1998).

ave that is heard as an auditory sound (Lin, 1977), which has been
hown in mammals but not in birds (Lin, 1978). In both mecha-
isms, the intensity of the response is dependent on the power
ensity of the incident microwaves (Lin, 1978; Wasserman et al.,
985).

We  investigated how radar affects bird behavior using brown-
eaded cowbirds (Molothrus ater) by simulating two situations in
hich animals are exposed to radar at airports: stationary (e.g.,

urveillance radar) and approaching (e.g., aircraft weather radar).
nder semi-natural conditions, we investigated the foraging and
igilance behaviors of cowbirds in response to stationary radar
n two experiments. In a third experiment, we assessed cowbird
scape behavior in response to an approaching threat (vehicle) fit-
ed with radar.

Assuming that birds can detect and process radar microwaves

ith their sensory systems, we hypothesized that radar increases

ensory load and challenges attention mechanisms. Attention is
imited (Dukas, 2004), and birds with difficult foraging tasks are less
ikely or take longer to detect other stimuli (Dukas and Kamil, 2000;
dar pulses: (b) the peak power emitted per pulse at the antenna, and (c) power
he dish or antenna, which rotates to scan up to 180◦ around it. A single pulse from

Kaby and Lind, 2003). Based on this attention hypothesis, we  made
a general prediction: radar microwaves would reduce the ability
of birds to attend to other sensory tasks. In the stationary radar
context (hereafter experiment 1A and 1B), we  predicted that birds
would forage less during exposure to radar microwaves, as they
would attend to radar to the detriment of foraging. In approaching
radar context (hereafter experiment 2), we  predicted that birds
would alert later to and escape later from the approaching threat
with radar on. Additionally, we predicted that the direction of the
escape flights would be more irregular with the radar on than off,
because the intermittent microwaves may  cause distraction while
in mid-flight. However, we also considered an alternative hypoth-
esis for experiment 2: if radar microwaves attract more attention
and/or increase alertness to the threat, then radar may enhance
the detection and perception of the approaching stimulus. Hence,

we alternatively predicted that birds would respond earlier to the
approaching threat with radar on than one with radar off.

In experiment 2 we were able to use two  different radar units
with different power densities. Therefore, we hypothesized that
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ncreased power density would increase the sensory response to
he radar (e.g., Wasserman et al., 1985). This enhanced response
ith power density could apply to both of the previously men-

ioned hypotheses. If radar distracts attention from the threat, then
he radar with higher power density would trigger more irregular
ights and delay alert and escape behaviors. If radar increases alert-
ess or attracts attention to the threat, then the radar with the
igher power density would trigger earlier alert and escape behav-

ors.

. Methods

.1. Bird capture and maintenance

All procedures were approved by Purdue Animal Care and
se Committee (protocol #1110000081) and the Institutional Ani-
al  Care and Use Committee of the United States Department of
griculture, Animal and Plant Health Inspection Service, Wildlife
ervices, National Wildlife Research Center (QA-2136). Our study
pecies, the brown-headed cowbird, is commonly found on airport
rounds and has been involved in >130 reported bird-aircraft colli-
ions (hereafter, bird strikes) in the past 23 years (Dolbeer et al.,
013). Species belonging to the families Sturnidae and Icteridae,
hich includes the brown-headed cowbird (Lowther, 1993), are

he second most common avian group involved in bird strikes with
ivil aircraft (Dolbeer et al., 2013), and among the top five most
azardous groups to military aircraft (Zakrajsek and Bissonette,
005).

For the stationary radar experiments, we captured 91 brown-
eaded cowbirds for experiment 1A (72 males and 19 females),
nd 41 for experiment 1B (all males) using six decoy traps located
t the National Aeronautic and Space Administration’s (NASA) Plum
rook Station, Erie County, OH, USA (41◦22′ N, 82◦41′ W).  We were
nable to capture an even number of males and females for exper-

ment 1A, and we were unable to capture females for experiment
B. Birds were then transported to and housed in outdoor aviaries
width 2 m × length 2 m × height 3 m)  at Purdue University Ross
eserve, West Lafayette, IN, USA (40◦24′35′′ N, 87◦4′2′′ W),  where
he experiments were conducted. Birds were housed for 1.5–3

onths before being used in experiments. The enclosures provided
reas with shade and wind protection, and contained perches. Ani-
als were housed in groups of 10–20 individuals, and were given

qual parts of white millet, game bird chow, and sunflower seeds,
nd water ad libitum. Food was provided in at least 5 small dishes
er enclosure, and water was provided in at least 2 large dishes
hich were heated to prevent freezing in the winter. Food and
ater were checked or changed every day, and enclosures were

leaned daily.
For the approaching radar experiment, we captured 116 brown-

eaded cowbirds (58 males and 58 females) using the same decoy
raps in the same location. Birds captured for the approaching radar
xperiment were kept less than one month prior to the exper-
ments. We  housed birds in length 2.4 m × width 2.4 m × height
.8 m enclosures at the Plum Brook Station in Erie County, OH,
SA, where the experiment was conducted. Experiment 2 was con-
ucted at a different location from experiments 1A and 1B due to
pace requirements, so we will not be comparing data from the two
xperiments. The animals used for both experiments were, how-
ver, trapped at the same location. The enclosures for experiment

 were located inside an aviary with large, barn-style doors that

ere opened during the day to allow airflow and light, and with

creened windows that were always open. Bird in groups of 20–50
ndividuals were provided metal perches, and were given white

illet, black oil sunflower, and water ad libitum. Food and water
iour Science 171 (2015) 241–252 243

were provided in at least 2 large dishes in each enclosure, and were
checked or changed daily. Enclosures were cleaned daily.

2.2. Radar units

We used two  X-band radar units, both loaned to us by Honeywell
International Inc. The first unit was a solid state radar (RDR-4000
Weather Radar System, Honeywell International Inc., Morristown,
New Jersey). This radar unit emits in the 9.33–9.38 GHz range, has
a maximum duty cycle of 10%, and an average interpulse interval
of 100 �s. The antenna has a gain of 35 dBi, nominal peak transmit
power of 40 W,  and rotates over an angle of 160◦ at an average rate
of 58◦ s−1. Any single point along the arc of the antenna rotation
only experiences radiation from the dish for a small portion of time
(Fig. 1c).

The second unit was a magnetron radar (PRIMUS 880 Digital
Weather Radar System, Honeywell International Inc.) The mag-
netron radar emits in the 9.36–9.40 GHz frequency range. However,
this unit has a lower duty cycle (0.048%) and shorter interpulse
period (2 �s) than the solid state radar. The antenna of the mag-
netron radar has a gain of 28.5 dBi, and scans at an average rate
of 58◦ s−1. While having a peak power of 10,000 W,  the mag-
netron radar has a power density of approximately 0.27 mW/cm2

at a distance of 10 m,  which is lower than the solid state radar
(1.01 mW/cm2 at 10 m).  Overall, the magnetron radar had a higher
peak power but a lower power density than the solid state radar.
Nevertheless, both units are used in aircraft: the magnetron radar
on smaller, business-type jets and helicopters, and the solid state
radar on larger commercial airplanes (Levi Bunch, pers. comm.).

2.3. Experiments 1A and 1B: stationary radar

We conducted two stationary radar experiments (hereafter,
experiments 1A and 1B), which differed mostly in the types of
foraging substrate and the season conducted. In experiment 1A
(performed in July 2012), we  manipulated the visual saliency of the
food items in relation to the visual background. The rationale was to
determine if the effects of radar would be more pronounced in the
foraging task that required higher attention loads (e.g., lower visual
conspicuousness of food) than lower attention loads (e.g., higher
visual conspicuousness of food). Because the avian visual system
is different from that of humans (Cuthill, 2006), we  calculated the
perceived chromatic contrast (measured in Just Noticeable Differ-
ences or JND) of food in relation to the visual background from
the cowbird visual perspective. One JND is a unit of distance in an
abstract color space specific to a species’ visual system. Lower and
higher JND values indicate that an object is less or more conspicu-
ous in relation to the visual background. We  used white millet as the
food item and sand substrates with different coloration. Chromatic
contrast was  calculated using the following parameters: (1) spec-
tral properties of ambient light (irradiance), (2) reflectance of the
white millet and sand substrates, and (3) sensitivity of the cowbird
visual system (Vorobyev and Osorio, 1998).

We used a StellarNet Black Comet portable spectroradiome-
ter (StellarNet, Tampa, Florida) to measure both irradiance and
reflectance, as in Moore et al. (2012). Irradiance was measured in
several light environments: sunny, cloudy, and shady conditions,
as those conditions were all possible at the site of the exper-
imental enclosure. We measured sunny conditions in an open
field with <10% cloud cover, cloudy conditions in the same open
field with >80% cloud cover, and shady conditions in a closed
forest with <10% cloud cover and ∼70% foliage cover. We mea-

sured the reflectance of the white millet and the substrates. We
used three sand colors as the foraging substrates: brown (Light
Brown Bottled Sand, Tree House Studio, sku# 551424), red (Red
Bottled Sand, Tree House Studio, sku# 553065), and green (Green
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ottled Sand, Tree House Studio, sku# 796342). Finally, we obtained
rom the literature (Fernández-Juricic et al., 2013) information
n cowbird peak sensitivity of visual pigments, absorbance of
il droplets, and relative densities of different photoreceptors.
hromatic contrast was calculated using Vorobyev and Osorio’s
hysiological color opponency model (Vorobyev and Osorio, 1998)

n Avicol v5 (Gomez, 2006). The chromatic contrast (in JNDs) of
hite millet with brown sand in the different light conditions was:

unny = 17.5, cloudy = 17.8, and shaded = 20.2. The chromatic con-
rast (in JNDs) of millet with red sand in the three light conditions
as: sunny = 37.2, cloudy = 37.6, and shaded = 39.6. The chromatic

ontrast (in JNDs) of millet with green sand in the three light con-
itions was: sunny = 93.4, cloudy = 93.2, and shady = 93.0. Overall,
rom the visual perspective of cowbirds, white millet was  more
alient against the green than the red and the brown backgrounds.

In experiment 1B (conducted in December 2012), we used the
ame food item (white millet) and a single substrate due to exper-
ment 1A findings (see below): sawdust, sifted to particulates of

 similar size to sand. In both stationary radar experiments 1A
nd 1B, we exposed individuals to the solid state radar which was
ocated outside a visual blind. The radar unit was placed at 5 m
power density in the direct path of the antenna was calculated to
e 4.03 mW/cm2 based on manufacturer specifications) from the
nclosure holding the bird because we wanted to use a distance
ith high chances of detecting behavioral responses to the radar.

In both experiments, the experimental enclosure (width
 × length 1 × height 0.75 m)  was without any metal components
hat might reflect incident microwaves. This enclosure was in the
enter of a 10 m × 10 m area surrounded by a 2 m tall black cloth
lind. Two Everio video cameras (GZMG750BUS, JCV Kenwood,
okahama, Japan) filmed the enclosure, one overhead and one

rom the side. Another Everio camera filmed the dish of the radar.
hese cameras fed into a multi-channel DVR so that all inputs were
ecorded in the same video file.

To encourage foraging behavior, we deprived birds of food from
2 to 20 h before the trials (following Fernández-Juricic et al., 2012).
e tested for differences in behaviors and body mass in birds with

ifferent food deprivation times and found no significant effects
results available upon request). Thus, we had no evidence that
ndividuals with longer deprivation times were adversely affected.
rior to each trial, we scattered 5 g of white millet on to the sub-
trate. At the start of each trial, a single bird was placed in the
nclosure and allowed to acclimate for a period of time (2 min  in
xperiment 1A, and 3 min  in experiment 1B) after it first pecked.
fter acclimating, we exposed the bird to a treatment phase of

 min, during which the radar was either on or off. Finally, there
as a 5 min  after-treatment phase during which the radar was off.

ndividuals were only tested once in the enclosure. We  measured
he body mass of the birds before they were placed in the enclosure.

e  recorded ambient temperature using a handheld Kestrel 3500
eather meter.

We  recorded cowbird behaviors using JWatcher (version 1.0
lumstein and Daniel, 2007). The two observers (experiment 1A:
elissa Hoover, experiment 1B: Eleanor Sheridan) were trained

ntil they reached an intra- and inter-observer reliability of 95%.
ll behaviors were considered as mutually exclusive. We  recorded

he following response variables: (1) peck rate (number of times
er min  the bill touched the substrate), (2) head up rate (num-
er of times per min  the head of the animal moved with the bill
arallel to the ground), (3) proportion of time head up, (4) move-
ent rate (number of times per min  the bird walked, ran, or flew
ithin the enclosure), (5) proportion of time moving, and (6) main-
enance rate. Maintenance rate in experiment 1A was  the number
f times per minute the bill touched any other part of the body
e.g. preening feathers), and in experiment 1B also included puff-
ng up of feathers, rearranging of wings on the back and whole
iour Science 171 (2015) 241–252

body shakes. Head up behavior was  considered a proxy of vigilance
behavior (Fernández-Juricic and Beauchamp, 2008).

We recorded these behaviors over two time scales: experiment-
wide scale to assess medium-term responses to radar and
1-min scale to assess more immediate responses to radar. The
experiment-wide scale considered all phases of the trial (2 or 3 min
before radar exposure, 5 min  during radar exposure, and 5 min after
radar exposure). At the 1-min time scale, we considered the bird
responses at radar onset and offset. Radar onset was  one minute
before and one minute after the radar was turned on. Radar offset
was one minute before and one minute after the radar was  turned
off.

2.4. Experiment 2: approaching radar

We  performed this experiment in June and July 2013, and
deprived birds of food from 12 to 20 h before each trial to encour-
age foraging. For this experiment, we also compared the behaviors
of birds with different food deprivation times and found no signifi-
cant effects. Before the trials, we moved birds to a holding location
near the experimental site in width 0.5 m × length 0.6 m × height
0.3 m enclosures, where we provided water ad libitum but no food
(for 0:30–5:30 h). This holding location was  visually obscured from
all parts of the vehicle approach and was not under the influence
of the experimental microwaves, which we measured with a High
Frequency Analyzer (Gigahertz solutions, Fürth, Germany).

For the vehicle approach, we used a white 2011 4 × 4 supercab
Ford F-150 (Ford Motor Company, Dearborn, Michigan), which was
initially parked 225 m away from the experimental enclosure. The
radar was  installed on the roof of the truck over the cab, bolted to
a wooden platform attached to a roof rack and powered by a Troy-
Bilt 5550 watt portable generator (Valley City, OH) in the bed of the
truck. The radar dish was shielded from the wind with a panel of
fiberglass reinforced plastic, which also blocked the movements of
the radar dish from being visible to the birds, making the approach
of the truck visually identical for all radar treatments. The truck
headlights were also blocked for all trials so that no light cue was
available to the animals. For this experiment, we used two radar
units: the solid state radar and the magnetron radar. The radar
treatment levels were: (1) radar off (the generator on the truck
was running but both radar units were off), (2) magnetron radar
(with the solid state unit off and the magnetron unit on), and (3)
solid state radar (with the magnetron unit off and the solid state
unit on). The assignment of the radar treatments was random.

The experimental enclosure was  semicircular with a radius of
2 m and a height of 1 m.  The floor of the experimental enclosure
was green artificial turf approximately 2.5 cm high. The mesh of
the enclosure was plastic netting with a mesh of 1.3 cm2 with a
PVC frame. A food dish containing ∼0.5 L white millet and black oil
sunflower seeds was 10 cm from the front edge of the enclosure in
the center. The top of the back, semicircular edge of the enclosure
had strands of artificial, leafy vegetation attached 10 cm below the
roof of the enclosure. The vegetation covered 12–20 cm of the outer
wall of the enclosure. This vegetation provided refuge for escape
(similar to Morgan and Fernández-Juricic, 2007).

Two JVC Everio (GZ-MG330AU, JCV Kenwood, Yokahama, Japan)
cameras filmed the behavior of the birds from the right and left
sides of the experimental enclosure. Two EverFocus security cam-
eras (EZ700W-001, Everfocus Electronics, Taipei, Taiwan) filmed
the enclosure from overhead. These overhead cameras (3.3 m high)
were placed 1.3 m apart to allow each camera to view the entire
base of the experimental enclosure. Two additional JVC Everio cam-

eras filmed the approach path of the truck at the start line of 210 m
from the enclosure and at 30 m from the front edge of the enclosure.
For diagrams of the experimental enclosure and camera locations
see Appendix Fig. 1. All six cameras were recorded onto a Night
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wl H.264 DVR (Night Owl  Security, Gray, Tennessee). All channels
ecorded at a resolution of 704 × 240 pixels and at 30 frames/s. An
bserver behind the screen observed the videos of the birds during
ach experiment.

At the start of a trial, the truck was parked behind the start line
ith the generator on (irrespective of the treatment) while we  mea-

ured wind speed, temperature, and humidity at the rear of the
nclosure. We  also measured light intensity with a portable digital
ux meter (401025, Extech Instruments, Nashua, New Hampshire).
fterwards, two birds (one male and one female) were released into

he enclosure. We  used pairs of birds for this experiment to help
ncrease sample size and because brown-headed cowbirds are often
ound in flocks when foraging in fields like those near airport run-
ays (Lowther, 1993). The birds were allowed to acclimate to the

nclosure for at least 3 min  without any disturbance. If the birds had
een foraging for at least 30 s during those 3 min, the observer sig-
aled to the truck driver to start the treatment exposure. If not, the
irds were allowed to acclimate until they had foraged constantly
or at least 30 s for up to 15 min. If the birds did not forage after
5 min, the trial was stopped and the birds were removed from the
nclosure. If the birds successfully foraged, the truck driver would
tart the approach with a given treatment. However, to apply the
adar treatments, the driver had to exit the vehicle at the start line
fter the birds were released in the enclosure. To eliminate differ-
nces between the treatments, the driver exited the vehicle with
he same motions for all treatments, including the radar off treat-

ent, before starting an approach. Pairs of birds were only used
nce and were therefore only exposed to one of the radar treatment
evels.

The driver accelerated the truck to a speed of 6.7 m s−1 before
eaching the 210 m start line and then maintained a speed of
.765 ± 0.002 m s−1 until 8 m from the experimental enclosure, at
hich point the driver braked to stop at least 2 m from the front of

he enclosure (see Appendix Fig. 1b). A High Frequency Analyzer
HFW59D, Gigahertz solutions, Fürth, Germany) was  monitored
y the observer behind the screen during the approach to ensure
hat the radar was functioning properly. If the radar turned off or
topped working before the birds completed their escape flights,
hat trial was not used.

We  measured the following behaviors: alert distance (AD), flight
nitiation distance (FID), angle of diversion, vertical take-off angle,
nd sinuosity. We  recorded all behaviors separately for each of the
wo birds in the experimental enclosure for each approach. We

easured the time of the first frame when the animal displayed
lert and flight behaviors. An alert behavior was defined as a change
n behavior or the rate of a behavior from the baseline, such as mov-
ng from a head down to a head up position, stretching the neck up,
rouching, and freezing. A flight was defined as a walk or run away
rom the approaching vehicle, or a flight recorded the moment the
nimal began pushing off the ground. While we  attempted to main-
ain a constant vehicle speed for all approaches, there was some

easurable variation in vehicle speed that we included in our cal-
ulations. We  calculated the vehicle speed by taking the distance
etween the cameras filming the vehicle approach and dividing it
y the time it took the vehicle to travel that distance. We deter-
ined the time at which the vehicle would have collided with the

nclosure, and measured the difference between that time and the
ime the animal displayed an alert or flight behavior. To measure
he AD and FID, we multiplied that time by the speed of the vehicle.

We measured the variables of angle of diversion, vertical take-
ff angle, and sinuosity using stereo triangulation based on the
osition of the bird bills in two calibrated cameras. This process

as completed in MATLAB (R2012a) using the Calibration Tool-

ox for MATLAB (http://www.vision.caltech.edu/bouguetj/calib
oc/index.html, Bouguet, n.d.) and is detailed in Appendix 1. The
utput of this method is the three dimensional position of the bill in
iour Science 171 (2015) 241–252 245

each frame of flight relative to a constant reference point. The start
of flight was the three dimensional position of the bill of the animal
in the frame before it spread its wings to fly. The small size of the
enclosure seemed to encourage some animals to change direction
sharply (>90◦) once near a portion of the vegetative cover. We  only
used the flights before this change in direction, if present. If there
was no sharp change in direction, we  used the flight until the bird
crossed the outside, bottom edge of the enclosure in the view of
either overhead camera. We measured the angle of diversion from
the path of the vehicle by comparing the direction of the flight to
the direction of the vehicle approach (◦). We  measured the vertical
take-off angle (◦) when the animal passed 50 cm from the start of
flight. A distance of 50 cm was  chosen because it was within the
range of distances used to measure take-off angle in other studies
(Kullberg et al., 1998; Lind et al., 2002). We  measured the vertical
take-off angle by measuring the angle (◦) of the flight compared to
a line at the level of the bird bill at the start of flight, parallel to
the ground. Sinuosity is a measure of the directness of the flight,
and was calculated by dividing the sum of the distances traveled
by the distance from the start to the end of the flight (unitless, with
1 indicating a direct flight of a straight line and values >1 indicating
increasingly less direct flights). Descriptions of all the dependent
variables can be found in Appendix 1.

2.5. Statistical analysis

In the stationary radar experiments, we used general linear
mixed models (using SAS 9.3). We first used a full model in which
we included radar exposure, ambient temperature, body mass, and,
in experiment 1A, substrate color as between-subject factors. We
did not include sex as a factor, because in experiment 1A the sexes
were imbalanced and confounded with body mass, and in experi-
ment 1B we  were unable to catch an adequate number of females to
include in the experiment. The within-subject factor was individ-
ual identity. At the experiment-wide scale, there were three levels
of radar exposure: before, during, and after exposure to the radar.
At the 1-min scale at radar onset, radar exposure had two levels:
the minute before and the minute after the radar was turned on. At
the 1-min scale at radar offset, radar exposure had two levels: the
minute before and the minute after the end of the radar exposure.
We also used a reduced model, from which we removed factors
other than radar exposure and substrate that were not significant in
the full model. We  compared the fit of the full vs. the reduced mod-
els with AIC and reported results from the model with the lowest
AIC values that still maintained all significant factors. For all anal-
yses, we used the following dependent variables: peck rate, head
up rate, proportion of time head up, maintenance rate, movement
rate, and proportion of time moving.

In the approaching radar experiment, we used general linear
mixed models (using SAS 9.3) to analyze the dependent variables:
AD, FID, angle of diversion, vertical take-off angle, and sinuosity.
In the full model, we included radar treatment (radar off, mag-
netron radar, and solid state radar) and sex as categorical factors
and ambient light intensity and speed of the truck as continuous
factors. We  used sex, as we  did not have body mass measurements
but were able to capture equal numbers of males and females for
experiment 2. Trial was  included as a repeated-measures random
factor, because in each trial two birds were exposed to the same
approaching vehicle and all behaviors were recorded for both birds
separately. We  also used a reduced model from which we removed
non-significant factors other than radar treatment. We  compared
the fit of the full versus the reduced models and reported the

one with the lowest AIC values that still maintained all significant
factors. Models with sinuosity as a dependent variable did not con-
verge due to rounding errors with light intensity, so we  scaled light
intensity in that model by dividing by 1000.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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For all models (both stationary and approaching radar exper-
ments), we used the Kenward–Rodgers degrees of freedom
stimation method and restricted maximum likelihood estimation
ethod. We checked all variables for normality, and log trans-

ormed those variables that were not normal. All results presented
re the untransformed least squares means ± standard error. For
he independent variables of time period (before, during, and after
adar exposure) and radar treatment (radar off, magnetron radar,
nd solid state radar), we used pairwise comparisons (t-tests) to
etermine differences between treatments. We  used a value of

 = 0.05 as our significance threshold.

. Results

.1. Experiments 1A and 1B: stationary radar

In experiment 1A, we  found some significant changes at the
xperiment-wide scale (i.e., when comparing the whole periods
f before, during, and after radar exposure). The head-up rate and
roportion of time head-up significantly changed with radar expo-
ure (Table 1, Fig. 2). Both head-up rate (Fig. 2a) and proportion
f time head-up (Fig. 2b) decreased from before to during radar
xposure (head up rate: t103 = 3.07, P = 0.003, proportion of time
ead up: t103 = 2.4, P = 0.018), but did not differ during and after
adar exposure (head up rate: t103 = 1.58, P = 0.116, proportion of
ime head up: t103 = 1.26, P = 0.211) (Fig. 2a and b). Experiment-
ide, radar exposure significantly influenced cowbird movement

ate and proportion of time moving (Table 1, Fig. 2). Individ-
als had higher movement rate (Fig. 2c) and proportion of time
oving (Fig. 2d) during radar exposure compared to before radar

xposure (movement rate: t101 = −3.21, P = 0.002, proportion of
ime moving: t103 = −4.13, P < 0.001), but the variation between
uring and after radar exposure was not significant (movement
ate: t101 = −0.08, P = 0.934, proportion of time moving: t103 = −0.64,

 = 0.522) (Fig. 2c and d). Body mass had a significant effect on
everal behaviors experiment-wide (Table 1): proportion of time
ead-up increased with body mass (coefficient 0.0027 ± 0.0011,

46 = 2.38, P = 0.022), and movement rate decreased with body
ass (coefficient −0.0035 ± 0.0013, t44.3 = −2.65, P = 0.011). Peck

ate also decreased with body mass (coefficient −0.003 ± 0.0012,
45.6 = −2.52, P = 0.015). Substrate color did not have a significant
ffect on any behavior (Table 1).

In experiment 1A, at the 1-min time scale, at radar onset there
ere no significant changes in any behavior (Table 2). Additionally,

ubstrate color did not affect any of the measured behaviors at radar
nset (Table 2). Body mass and ambient temperature also did not
ave any significant effects, and were therefore removed from the
odel (Table 2). In experiment 1A at radar offset, there were also

o significant changes in behavior (Table 2). Peck rate decreased
ith body mass at radar offset in experiment 1A (coefficient
0.005 ± 0.001, t40.7 = −3.51, P = 0.001) (Table 2). Substrate color
id not significantly affect any behavior at radar offset (Table 2).

In experiment 1B, there was a significant decrease in peck
ate experiment-wide (Table 1), but this decrease in peck
ate was only significant from before (16.3 ± 1.2 pecks min−1) to
fter (10.1 ± 1.0 pecks min−1) exposure to the radar (t36.4 = 2.97,

 = 0.005). Peck rate during radar exposure (12.1 ± 1.1 pecks min−1)
id not differ from either before radar exposure (t36.1 = 1.95,

 = 0.059) or after radar exposure (t36.1 = 1.04, P = 0.304). We did
ot find significant changes experiment-wide in head-up rate,

roportion of time head-up, movement rate, or proportion of
ime moving (Table 1). Experiment-wide, proportion of time head
p significantly increased (Table 1) with body mass (coefficient
.025 ± 0.011, t17 = 2.24, P = 0.038). Ambient temperature did not
iour Science 171 (2015) 241–252

have a significant effect on any behavior experiment-wide and was
therefore removed from the reduced models (Table 1).

In experiment 1B, on the 1-min time scale at radar
onset, movement rate significantly increased (Table 2)
from before (11.9 ± 1.8 movements min−1) to after (22.2 ±
2.1 movements min−1) radar onset. Body mass and ambient
temperature did not significantly affect any behavior at radar
offset in experiment 1B and were removed from the models
(Table 2). Radar offset did not significantly affect any behavior in
experiment 1B (Table 2). In experiment 1B, on the 1-min time scale
at radar offset, peck rate decreased with body mass (coefficient
−0.027 ± 0.012, t17 = −2.24, P = 0.039) and head up rate increased
with body mass at radar offset in experiment 1B (coefficient
0.036 ± 0.016, t16 = 2.31, P = 0.035; Table 2). Ambient temperature
did not have a significant effect on any behavior at radar offset in
experiment 1B and was  removed from the models (Table 2).

3.2. Experiment 2: approaching radar

We  did not find significant effects of radar on alert distance
(AD, Table 3), but we  found significant effects of radar treatment
on flight initiation distance (FID) (Table 3; Fig. 3a). Birds exposed
to the solid state radar had a greater FID than birds exposed to
either the magnetron radar (FID: t55.6 = −2.1, P = 0.040) or the radar
off (FID: t56.3 = −2.66, P = 0.010). This means that birds exposed to
the solid state radar escaped earlier to the vehicle approach than
birds in either the magnetron radar or radar off treatment. Vehicle
speed, light intensity, and sex did not significantly affect AD or FID,
but models with some or all of these factors had the best fit (i.e.,
lowest AIC values, Table 3).

Radar treatment also had a significant effect on the angle of
diversion (Table 3; Fig. 3b). Cowbirds exposed to the magnetron
radar diverged more from the path of the truck than cowbirds in
the radar off group (t41.5 = −2.67, P = 0.011), whereas the solid state
radar did not differ from either the magnetron radar (t42.0 = 1.15,
P = 0.257) or radar off treatments (t42.2 = −1.13, P = 0.266) (Fig. 3b),
indicating that cowbirds in the magnetron radar treatment flew
more perpendicular to the approaching truck than the radar off
treatment. Light intensity also had a significant effect on the angle
of diversion (Table 3), with cowbirds diverging more from the
path of the vehicle when light intensity was  higher (coefficient
0.0004 ± 0.0001, t39.8 = 3.09, P = 0.004). Sex and vehicle speed did
not affect the angle of diversion significantly but models with these
variables had a better fit (i.e., lower AIC values, Table 3).

Radar treatment did not have an effect on the vertical take-off
angle or on the sinuosity of flights (Table 3). However, sex did have
an effect on vertical take-off angle (Table 3): males took off more
steeply (59.6 ± 2.1◦) than females (53.5 ± 2.0◦). Vehicle speed and
light intensity did not affect take-off angle, but the model including
vehicle speed had the best fit in terms of AIC values (Table 3). Sex
also had an effect on flight sinuosity (Table 3), with males having
more sinuous or less direct escape flights (1.20 ± 0.01) than females
(1.15 ± 0.01). Vehicle speed had a significant effect on sinuosity
(Table 3), with sinuosity increasing with vehicle speed (coefficient
0.141 ± 0.064, t47.5 = 2.19, P = 0.034).

4. Discussion

With both the stationary and approaching radar experiments,
we found some behavioral responses of cowbirds that could be
associated with the presence of radar. In the stationary radar exper-

iments, we found that birds moved more and decreased vigilance
behaviors when exposed to radar, although other behaviors were
not significantly affected. This did not follow our prediction that
birds would decrease foraging and increase vigilance in response
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Table  1
General linear mixed model showing foraging and vigilance behaviors at the experiment-wide scale of both the stationary radar experiments 1A and 1B (see text for details).
AIC  values for models with all covariates (full model) and models with non-significant terms removed (reduced model) are shown for comparison. Bolded AIC values indicate
the  model used. Periods of radar exposure are before, during, and after radar exposure. Levels of substrate color are brown, green, and red. Significant values are displayed
in  bold.

Full model AIC Reduced model AIC Fd.f P

Experiment 1A
Peck rate (log) −460.5 −470.3 Radar exposure 2.182,103 0.118

Substrate 0.072,53.9 0.933
Body mass 6.351,45.6 0.015

Head  up rate 2.2 −11.7 Radar exposure 11.22,103 <0.0001
Substrate 2.272,61.4 0.112

Proportion of time head up (log) −566.5 −577 Radar Exposure 6.92,103 0.002
Substrate 0.332,61.9 0.720
Body mass 5.671,46 0.022

Maintenance rate (log) −1174 −1204 Radar exposure 0.212,102 0.809
Substrate 1.192,48.9 0.313

Movement rate (log) −489.9 −498.6 Radar exposure 7.042,101 0.001
Substrate 1.772,56.2 0.181
Body mass 7.041,44.3 0.011

Proportion of time moving −536.3 −555.9 Radar exposure 13.42,103 <0.0001
Substrate 0.862,60.4 0.430

Experiment 1B
Peck rate (log) −135.7 −152.6 Radar exposure 4.52,36.2 0.018

Head  up rate −8.1 −17.8 Radar exposure 3.112,36.2 0.057

Proportion of time head up −55.6 −62.8 Radar exposure 0.682,36.1 0.513
Body mass 5.041,17 0.038

Maintenance rate (log) −428.9 −459.2 Radar exposure 0.042,36.7 0.962

Movement rate −55.1 −68.3 Radar exposure 1.962,36.3 0.155

Proportion of time moving −91.5 −105.9 Radar exposure 2.972,36.4 0.064
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ig. 2. Significant changes in (a) head up rate, (b) proportion of time head up, (c) mo
adar  experiment 1A. The significant changes were from before to during and afte
tatistical differences.
o radar. In the approaching radar experiment, we found that cow-
irds responded earlier to approaches with the solid state (more
owerful) radar, and diverged more from the path of the appro-
ching vehicle with the magnetron radar (less powerful). This
nt rate, and (d) proportion of time moving at the longer time scale in the stationary
r, with behaviors being similar during and after radar. Letter superscripts indicate
followed the predictions of our alternative hypothesis that radar
increases alertness or attention to a threat.

In the stationary radar experiment 1A, we did not find effects
of the substrate color on any behavioral response, which suggests
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Table 2
General linear mixed model showing how radar onset and offset affect foraging and vigilance behaviors in both the stationary radar experiments 1A and 1B, at the 1-min scale (see text for details). AIC values for models with all
covariates  (full model) and models with non-significant terms removed (reduced model) are shown for comparison. Bolded AIC values indicate the model used. Levels of radar are before and after the radar is turned on. Levels of
substrate  color are brown, green, and red. Significant values are displayed in bold.

Onset Offset

Full model AIC Reduced model AIC Fd.f P Full model AIC Reduced model AIC Fd.f P

Experiment 1A
Peck rate (log) −220.3 −237.1 Radar 0.041,52,1 0.835 −250.5 −259.4 Radar 0.141,50 0.709

Substrate 0.382,50.2 0.683 Substrate 0.492,45.7 0.617
Body mass 12.31,40.7 0.001

Head  up rate 87.3 75.3 Radar 0.781,49.2 0.381 65.1 52.1 Radar 1.141,51 0.284
Substrate 1.332,48.8 0.273 Substrate 2.142,54.6 0.124

Proportion of time head up −41.3 −55.1 Radar 0.051,51.4 0.817 −47.8 −56.4 Radar 1.041,48.8 0.312
Substrate 0.752,50.8 0.477 Substrate 1.462,53.5 0.241

Maintenance rate (log) −635.2 −661.9 Radar 0.61,51.3 0.444 −609 −637.7 Radar 1.001,46.1 0.323
Substrate 0.712,63.7 0.494 Substrate 1.022,38.4 0.371

Movement rate (log) −270.7 −288 Radar 0.51,51.5 0.482 −254.6 −271.1 Radar 0.141,42.9 0.706
Substrate 0.262,53.8 0.775 Substrate 2.962,47.5 0.062

Proportion of time moving (log) −301.5 −321.4 Radar 0.171,51.3 0.678 −267.4 −285.1 Radar 0.161,48.3 0.688
Substrate 0.772,51 0.468 Substrate 1.652,50 0.202

Experiment 1B
Peck rate 8.8 −3.6 Radar 0.241,18 0.632 −4.9 −12.2 Radar 0.391,18 0.539

Body mass 5.021,17 0.039

Head  up rate −0.6 −13.7 Radar 0.411,18 0.532 10 – Radar 0.181,18 0.674
Body mass 5.321,16 0.035
Temperature 4.31,16 0.055

Proportion of time head up −17.2 −29.3 Radar 3.071,18 0.097 −11.4 −21.1 Radar 1.541,18 0.230

Maintenance rate (log) −181.4 −205.9 Radar 0.161,18 0.691 −187.1 −212.4 Radar 0.021,18 0.898

Movement rate −40.1 −54.1 Radar 6.741,18 0.018 −77.3 −93.7 Radar 0.471,18 0.503

Proportion of time moving (log) −138.2 −158.1 Radar 4.191,18 0.056 −98.4 −116 Radar 1.261,18 0.277
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Table  3
General linear mixed model showing the alert distance (AD), flight initiation distance (FID), vertical take-off angle, angle of diversion, and sinuosity of cowbirds in response
to  an approaching vehicle with the three radar treatments: radar off, solid state radar, and magnetron radar. AIC values for models with all covariates (full model) and models
with  non-significant terms removed (reduced model) are shown for comparison. Bolded AIC values indicate the model used. Significant values are displayed in bold.

Full model AIC Reduced model AIC Fd.f P

Alert distance (AD) 1037.2 1066.3 Radar treatment 0.612,49.5 0.547
Sex 0.251,50.3 0.620
Vehicle speed 0.471,46.1 0.496
Light intensity 1.141,47.8 0.291

Flight initiation distance (FID) (log) 72.4 67.7 Radar treatment 3.722,54.9 0.031
Vehicle speed 0.641,55 0.428
Light intensity 0.751,54.1 0.389

Vertical take-off angle 740.7 732.8 Radar treatment 1.82,45.6 0.176
Sex 6.861,43.7 0.012
Vehicle speed 0.01,47.9 0.998

Angle  of diversion 800.7 808.8 Radar treatment 3.582,41.9 0.037
Sex 1.691,40.2 0.201
Vehicle speed 0.21,44.5 0.660
Light intensity 9.551,39.8 0.004

Sinuosity (log) −164.3 – Radar treatment 0.432,44.6 0.652
Sex 6.111,48.9 0.017
Vehicle speed 4.791,47.5 0.034
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Fig. 3. FID and flight direction in response to an approaching vehicle with one of
three radar treatments: radar off, magnetron radar on (low power density) and solid
state radar on (high power density). (a) The flight initiation distance in response to
an  approaching vehicle, with larger distances indicating a flight earlier in the vehicle
approach. (b) The angle of diversion from the path of the approaching vehicle, mea-
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ginianus) have also been shown to modify behavioral response
times in response to vehicle approaches similar to the one used in
ifferences.

hat the degree of visual conspicuousness of the food items did
ot influence foraging behaviors. Previous work (e.g., Siddiqi et al.,
004) has set a range (1–4 JNDs) at which items are difficult to
iscern from the background. In our study, the visual contrast of
he seeds was much higher than 4 JNDs. It is possible that we did

ot find significant effects of substrate color on foraging behavior
ecause the foraging task was not visually challenging enough.
Light intensity 3.991,42.7 0.052

In the stationary radar experiment 1A, we found that cow-
birds scanned less and moved more during radar exposure at the
experiment-wide scale, but this effect was not reversed after radar
exposure. In experiment 1B, we also observed an increase in move-
ment rate, this time at the 1-min scale at radar onset. Birds may
have been moving within the enclosure to avoid the microwaves
as the antenna scanned the enclosure. This finding is similar to that
of Wasserman et al. (1984a), where blue jays avoided portions of
enclosures with microwaves. However, this result cannot explain
the continuation of higher movement rates in the period after radar
exposure. A decrease in vigilance behavior could have been caused
by habituation to the enclosure after the first 2 min (see Fernández-
Juricic et al., 2013). Factors other than radar exposure, such as food
depletion after the first couple of minutes could also have led to
increased movement rates as birds searched in the enclosure for
food (Krebs et al., 1974). However, no bird consumed more than
25% of the food provided in each trial. We  also found that peck
rate decreased with body mass, similar to previous studies (e.g.;
Lewis and Dougherty, 1992; Fernández-Juricic and Beauchamp,
2008).

In the approaching radar experiment, we did not find a sig-
nificant effect of either radar treatment on alert distance, maybe
because birds were alert to the vehicle before we could begin
recording alert behaviors or the birds were alert but we could not
detect overt behaviors. Nevertheless, there was  a significant effect
of radar on flight initiation distance. Contrary to our predictions
based on limited attention, we  found that with the solid state radar
birds escaped earlier, allowing birds more time to maneuvre out of
the path of an approaching vehicle. This result supports our alterna-
tive hypothesis, that radar increases alertness or attracts attention
to the approaching threat. Greater attention directed toward the
radar could change the assessment of the threat, which is one of
the behavioral steps at which an animal can modify to avoid col-
lision with a vehicle (Lima et al., 2014). There have been many
studies showing that animals can evaluate threats and change
flight initiation distance accordingly (reviewed by Stankowich and
Blumstein, 2005). Cowbirds and white-tailed deer (Odocoileus vir-
this study (Blackwell et al., 2014, 2009b; Blackwell and Bernhardt,
2004; Blackwell and Seamans, 2009; DeVault et al., 2014). Overall,
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f the radar treatment enhances the perceived risk of the approa-
hing vehicle, this could lead to earlier escape responses (Ydenberg
nd Dill, 1986; Cooper and Blumstein, 2013).

The other significant effect of the approaching radar, the
ncreased angle of diversion in the magnetron radar treatment,
ould be interpreted as the bird maneuvring to avoid a collision.
iversions from the direction of approach of a threat have also
een documented in response to raptor predator models (Devereux
t al., 2008; Kullberg et al., 2000; Lind et al., 2002, 2003). We  pro-
ose that in our experiment where birds were in the center of a
oad, escape flights could vary between two extremes: birds flying
way from the road (more perpendicular to the vehicle approach)
nd birds flying along the road in front of the vehicle (parallel to
he vehicle approach) (similar to findings from Husby and Husby,
014). For the animal to avoid a collision when flying away from
he road, it would only have to travel part of the width of the vehi-
le (2.0 m).  On the other hand, to avoid collision while flying along
he road, the animal would have to rise over top of the vehicle (a
.1 m height). Flying away from the road would have the short-
st distance to travel to escape collision, whereas flying along the
oad would have the longest. Because birds in the magnetron radar
reatment had a greater angle of diversion, they flew more per-
endicular to the vehicle approach and therefore shorter distances
way from the vehicle. This result could also support our alterna-
ive hypothesis that radar increases alertness or attracts attention
o the threat, making the threat seem riskier, as birds chose shorter
scape directions when exposed to the magnetron radar.

Although we did not find significant effects of radar on sinuosity
r vertical take-off angle, we did find that males and females dif-
ered for these two variables. Males took off more steeply and flew
ith more sinuous flights than females. It has been hypothesized

hat in the context of initiating escape flights, prey should optimize
cceleration (i.e., lower take-off angles) or maneuverability (i.e.,
teeper take-off angles) depending on predator attack speed and
istance (Howland, 1974; Witter and Cuthill, 1993). This trade-off
etween acceleration and take-off angle has been demonstrated by
ullberg et al. (1998), and male and female cowbirds may  optimize
cceleration versus take-off angle differently. Our results seem to
ndicate that males, having greater body mass (Lowther, 1993)
nd likely muscle mass, are optimizing maneuverability in escape
ights, and females are optimizing acceleration. This result is oppo-
ite to that of previous studies: take-off angles generally decrease
ith increased body mass (Kullberg et al., 1996; Lind et al., 1999;
itter et al., 1994). Our findings could instead indicate that the

exes have different escape strategies. Males seemed to be dodging
nd outmaneuvering the approaching threat, but females seemed
e accelerating in a more direct path, possibly as if toward nearby
over (Kullberg and Lafrenz, 2007; Witter and Cuthill, 1993).

There are different ways that the two mechanisms of detec-
ing microwaves could explain why the solid state and magnetron
adars affected behaviors differently. Through the thermoreception
f microwaves, the difference in power density of the two  radars
ould be the reason the solid state radar (higher power density)
ncreased FID while the magnetron radar (lower power density)
id not. Higher power densities are more likely to raise the tem-
erature of tissues and alter behavior (Wasserman et al., 1985).
hrough the hearing of microwave pulses as summarized in Lin
1978), a difference in the intensity of the sound produced could
ossibly explain why we observed a significant effect of the mag-
etron radar on angle of diversion. The two radars we used had
ifferent interpulse intervals and energy per pulse, and these differ-
nces could have produced a different intensity of sound from the

agnetron radar (Lin, 1978). To our knowledge, a vital part of this
echanism, bone conduction of sound, has yet to be documented in

irds (but see Schwartzkopff, 1955). In mammals, however, mea-
urable vibrations at the round window have been produced by
iour Science 171 (2015) 241–252

the bone conduction of sounds from microwave pulses (Chou et al.,
1975).

4.1. Applied implications

The effects of radar on bird behavior could potentially be applied
to the management of birds at airports, where electromagnetic
radiation levels are high. Airports are locations where human-
wildlife interactions are tightly managed (Cleary and Dolbeer,
2005; DeVault et al., 2013). Bird strikes are of conservation concern
for threatened/endangered bird species (Blackwell et al., 2009a)
as well as a safety and monetary concern for the aviation indus-
try (Dolbeer et al., 2013). To mitigate this problem, many airports
employ wildlife control techniques that involve removing attrac-
tive habitats for breeding or foraging, trapping and removal of
wildlife, wildlife repellents, and in some cases lethal control (Cleary
and Dolbeer, 2005; DeVault et al., 2013; Hesse et al., 2010). The
changes in behaviors we observed could be used to inform wildlife
control techniques on airports.

We found some evidence that stationary radar changes move-
ment behaviors. These increased movements may  be an indication
that birds were attempting to avoid radar microwaves, as in
Wasserman et al. (1984a). There are also studies on other frequen-
cies of electromagnetic radiation over much longer time periods
that showed population declines and changes in the distribution of
species during the breeding season (Balmori and Hallberg, 2007;
Everaert and Bauwens, 2007; Rejt et al., 2007). These avoidance
behaviors in response to radar could potentially be exploited in
combination with other stimuli, like visual cues, to develop deter-
rents for areas of airport property close to radar. However, other
studies using a similar X-band radar without a visual cue have
shown that radar alone does not alter the behavior of migrating
birds (e.g. Bruderer et al., 1999).

In our approaching radar experiment, the increase in flight ini-
tiation distance we  observed could allow birds to perform escape
maneuvers more successfully in response to an aircraft (Bernhardt
et al., 2010). Assuming our flight initiation distances are similar to
those given to aircraft, we can argue that at taxiing aircraft speeds
(approximately 3–10 m s−1) birds responding to an aircraft with
the solid state radar would escape 2–6 s earlier than birds respon-
ding to an aircraft with no radar, potentially leading to an increase
in the number of successful escapes. However, these effects may
be minimized at higher speeds. For instance, approach speeds dur-
ing landing of large aircraft using solid state radars (e.g., Airbus
A330, a category C aircraft) range from 62 to 73 m s−1 (Federal
Aviation Administration, 2014), leaving birds with 0.3 s more to
escape in response to the radar. Take-off and cruising speeds are
generally higher than approach speeds (ranging from 67 to over
250 m s−1 depending on aircraft type), leaving birds with very little
more time (from 0.3 to <0.1 s) to make successful escape maneu-
vers. There is limited evidence that in some circumstances birds
might increase flight initiation distances with increases in vehicle
speed (Legagneux and Ducatez, 2013; DeVault et al., 2014), so our
estimates of how much earlier birds respond to aircraft with radar
in flight may be conservative.

In conclusion, we found evidence that just one of the many types
of electromagnetic radiation found at airports can change avian
behavior. We  also found different effects of two  radar units during
vehicle approach, indicating that slight differences in power den-
sity and pulse properties can potentially alter bird behavior. Our
findings suggest that radar enhances some avoidance responses

to approaching threats, and therefore changes how birds evalu-
ate the risk of a threat. Overall, this provides some evidence that
birds notice the presence of radar in some contexts, which has
implications for wildlife management at airports.
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